SMS Spam Filtering Technique Based on Artificial Immune System
نویسندگان
چکیده
The Short Message Service (SMS) have an important economic impact for end users and service providers. Spam is a serious universal problem that causes problems for almost all users. Several studies have been presented, including implementations of spam filters that prevent spam from reaching their destination. Naïve Bayesian algorithm is one of the most effective approaches used in filtering techniques. The computational power of smart phones are increasing, making increasingly possible to perform spam filtering at these devices as a mobile agent application, leading to better personalization and effectiveness. The challenge of filtering SMS spam is that the short messages often consist of few words composed of abbreviations and idioms. In this paper, we propose an anti-spam technique based on Artificial Immune System (AIS) for filtering SMS spam messages. The proposed technique utilizes a set of some features that can be used as inputs to spam detection model. The idea is to classify message using trained dataset that contains Phone Numbers, Spam Words, and Detectors. Our proposed technique utilizes a double collection of bulk SMS messages Spam and Ham in the training process. We state a set of stages that help us to build dataset such as tokenizer, stop word filter, and training process. Experimental results presented in this paper are based on iPhone Operating System (iOS). The results applied to the testing messages show that the proposed system can classify the SMS spam and ham with accurate compared with Naïve Bayesian algorithm.
منابع مشابه
An Effective Model for SMS Spam Detection Using Content-based Features and Averaged Neural Network
In recent years, there has been considerable interest among people to use short message service (SMS) as one of the essential and straightforward communications services on mobile devices. The increased popularity of this service also increased the number of mobile devices attacks such as SMS spam messages. SMS spam messages constitute a real problem to mobile subscribers; this worries telecomm...
متن کاملSMS spam filtering: Methods and data
Mobile or SMS spam is a real and growing problem primarily due to the availability of very cheap bulk pre-pay SMS packages and the fact that SMS engenders higher response rates as it is a trusted and personal service. SMS spam filtering is a relatively new task which inherits many issues and solutions from email spam filtering. However it poses its own specific challenges. This paper motivates ...
متن کاملA spam filtering model based on immune mechanism
With the development of network, some mail business growing has become a pressing problem in the internet. The problem for the traditional method of spam filtering can not effectively identify the unknown and variation characteristics, artificial immune system exists diversity, immune memory, adaptive and self learning ability, adopt the idea of to mail filtering, and design an improved spam fi...
متن کاملArtificial immune system inspired behavior-based anti-spam filter
This paper proposes a novel behavior-based anti-spam technology for email service based on an artificial immune-inspired clustering algorithm. The suggested method is capable of continuously delivering the most relevant spam emails from the collection of all spam emails that are reported by the members of the network. Mail servers could implement the anti-spam technology by using the “black lis...
متن کاملFiltering Network Spam Message using Approximated Logistic Regression
The development of telecom network and Internet provides effective ways for communication. As an important way in communication, Short Messaging Service (SMS) via both telecom network and Internet has played an increasing important role in daily life. However, it usually suffers from spam SMS that causes misunderstanding and cheat. The highly varying content, network environment make the identi...
متن کامل